Post-disposal Orbital Evolution of Satellites and Upper Stages Used by the Gps and Glonass Navigation Constellations: the Long-term Impact on the Medium Earth Orbit Environment

نویسندگان

  • Carmen Pardini
  • Luciano Anselmo
چکیده

The long-term evolution and environmental impact in MEO of all the abandoned spacecraft and upper stages associated with the GPS and GLONASS navigation constellations were analyzed. The orbits of the disposed objects, as of 1 May 2011, were propagated for 200 years and snapshots of their evolving distribution were obtained, together with an estimation of the changing collision probability with the spacecraft of the operational navigation systems existing or planned in MEO, i.e. GLONASS, GPS, Beidou and Galileo. The probability that the abandoned objects considered will collide with the operational spacecraft of the navigation constellations is very low, even taking into account the intrinsic eccentricity instability of the disposal orbits. Assuming the present or envisaged configuration of the constellations in MEO, the probability of collision, integrated over 200 years, would be < 1/300 with a GLONASS spacecraft, < 1/15,000 with a GPS or Beidou spacecraft, and < 1/250,000 with a Galileo spacecraft. The worst disposal strategy consists in abandoning satellites and upper stages close to the altitude of the operational constellation (GLONASS), while a re-orbiting a few hundred km away (GPS) is able to guarantee an effective longterm dilution of the collision risk, irrespective of the eccentricity instability due to geopotential and luni-solar perturbations. The disposal strategies applied so far to the GPS satellites should be able to guarantee for at least a few centuries a sustainable MEO environment free of collisions among intact objects. Consequently, there would be no need to adopt disposal schemes targeting also the optimal value of the eccentricity vector. However, it should be pointed out that the GPS disposal strategy was devised well in advance of the Beidou constellation announcement, so most of the abandoned satellites were re-orbited fairly close to the altitude of the new Chinese system. A new reorbiting approach will be therefore needed in the future.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iac - 13 - B 2 . 1 . 3 Gnss Performances for Meo , Geo and Heo

Global Navigation Satellite Systems (GNSSs) such as GPS, GLONASS, and the future Galileo and BeiDou, have demonstrated to be a valid and efficient system for various space applications in Low Earth Orbit (LEO), such as spacecraft orbit and attitude determination, rendezvous and formation flight of two or more spacecrafts, and timing synchronization. A GNSS presents a number of significant advan...

متن کامل

Improving the Reliability of GPS and GLONASS Navigation Solution in Urban Canyons using a Tuned Kalman Filter

Abstract: Urban canyon is categorized as hard environment for positioning of a dynamic vehicle due to low number and also bad configuration of in-view satellites. In this paper, a tuning procedure is proposed to adjust the important factors in Kalman Filter (KF) using Genetic Algorithm (GA). The authors tested the algorithm on a dynamic vehicle in an urban canyon with hard condition and compare...

متن کامل

Evaluation of Geometric and Atmospheric Doppler for GNSS-RO Payloads

To reduce the sampling rate in global navigation satellite system (GNSS)-radio occultation receivers, it is essential to establish a suitable estimation of Doppler frequency from the received signal in the satellite onboard receiver. This receiver is usually located on low earth orbit satellite and receives GNSS satellites signal in the occultation situation. The occurred Doppler on the signal ...

متن کامل

Assessment of the Contribution of BeiDou GEO, IGSO, and MEO Satellites to PPP in Asia–Pacific Region

In contrast to the US Global Positioning System (GPS), the Russian Global Navigation Satellite System (GLONASS) and the European Galileo, the developing Chinese BeiDou satellite navigation system (BDS) consists of not only Medium Earth Orbit (MEO), but also Geostationary Orbit (GEO) as well as Inclined Geosynchronous Orbit (IGSO) satellites. In this study, the Precise Point Positioning (PPP) an...

متن کامل

A New GNSS Single-Epoch Ambiguity Resolution Method Based on Triple-Frequency Signals

Fast and reliable ambiguity resolution (AR) has been a continuing challenge for real-time precise positioning based on dual-frequency Global Navigation Satellite Systems (GNSS) carrier phase observation. New GNSS systems (i.e., GPS modernization, BDS (BeiDou Navigation Satellite System), GLONASS (Global Navigation Satellite System), and Galileo) will provide multiple-frequency signals. The GNSS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011